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Liquid—-Liquid Driven Cavity Flow
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Liquid—{iquid driven cavity flow was studied numerically. Information
on “realistic” liguidiquid interface conditions were obtained from
photochromic flow visualization experiments, With this input, numeri-
cally obtained flow fields agreed well with experimentally observed
flow fields. A parametric numerical study showed the influence of
various parameters on the behavior of interface velocity and tangential
shear stress gradients in the vicinity of the liquid-tiquid interface.
© 1994 Academic Press, Inc.

1. INTRODUCTION

Driven cavity flow has been used frequently for testing
and evaluating numerical techniques. Usually, the case con-
sidered involves a square cavity which is filled with a fuid.
The top wall moves with a uniform velocity in its own plane.
Movements inside the cavity are caused by the tangential
shear stress to which the fluid is subjected by the moving top
wall. Solutions for laminar flow in a driven cavity over a
wide range of Reynolds numbers have been presented by
various authors [1-57.

The problem considered in this study involves two
immiscible liguids. One liquid is confined in a square cavity,
while the second, lighther liquid flows across the top of
the cavity, Isothermal conditions are assumed; therefore, all
movements of the fluid within the cavity are caused by the
lighter fluid flowing across the cavity.

The mathematical description of the liguid-liquid driven
cavity problem is straightforward, with the exception of the
description of the liquid-liquid interface. The physical
characteristics of liquid-liquid interfaces have been dis-
cussed for nearly one century. A widely held view states that
the liquid-liquid interface characteristics depend strongly
on interface tension gradients and that the interface tension
gradients depend strongly on concentration gradients of
surface-active contaminants. This subject has been dis-
cussed extensively by Scriven [6], Harper [7], Frumkin
and Levich [8, 9], Savic [107, Griffith [11], Davis and
Acrivos (127, Levich {13], and many others. Interface ten-
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sion gradients tend to reduce the mobility of a liquid-liquid
interface. If an interface is fully mobile, it is characterized by
continuous tangential shear stress across the interface. If an
interface is not fully mobile or even rigid, tangential shear
stresses on both sides of the interface take on different
values. Since totally mobile interfaces have rarely been
observed, one must either conclude that the surface con-
tamination is not the only reason for the reduced mobility
of the liquid-liquid interfaces or one must conclude that
surface active substances are virtually always present. Since
the degree of contamination of industriai grade fluids is
usually unknown and cannot easily be determined, the
prediction of interface characteristics is difficult to make. In
order to overcome this obstacle, a series of experiments was
carried out, providing sufficient information for a “realistic”
interface description.

2. EXPERIMENTS

A detailed description of the experimental apparatus used
in this study was provided by Walter [157. An essential part
of the experimental setup was a horizontal flow channel
which was 25.4 mm wide and 10.2 mm high. A rectangular
cavity was provided at the bottom of the channel. The cavity
was 254 mm wide and 9 mm deep. Its length could be
varied from 0 to 20 mm. The cavity was located 1.1 m from
the channel entrance. The walls of the cavity and the
adjacent flow channel were made from plexiglass. A glass
window was provided at the bottom of the cavity to allow
determination of flow fields in the cavity and the channel
with the help of a flow visualization technique.

The cavity was filled with a mixture of ethanol and water
while a laminar flow of a petroleum solvent known as
AMSCO mineral spirits was maintained in the channel. The
ethanol-water mixture and the petroleum solvent did not
mix and showed a clearly identifiable interface. Channel
fluid and cavity fluid contained radiachromic dyes. These
dyes, hexahydroxyethyl pararosaniline cynide dissolved in
the water—ethanol mixture and the photochromic dye
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FIG. 1.

1',3',3-trimethyl-6'-nitroindoling-2-spiro-2-2'-benzopyran
dissolved in the petroleum solvent, are colorless in the
absence of ultraviolet light. They can be readily activated
with a nitrogen puise laser to produce well-defined narrow
colored lines in the fluid. The movement of these criginally
straight lines may be cither simply observed to obtain a
qualitative impression of the flow or they may be recorded
with high speed photography for later evaluation. Details
of this flow visualization technique have been discussed
elsewhere [16, 17].

Figure 1 shows the cavity at the bottom of the flow chan-
nel. Also seen are dye traces which were produced by laser
pulses. The laser beams were directed across the window at
the bottom of the cavity so as to produce straight dye traces
perpendicular to the channel flow. The laser was also moved
from right to ieft in order to create each trace in a different
location in the cavity. Therefore, the trace on the left in the
cavity corresponds to the trace on the right in the channel
flow. As can be seen, the flow is quite weak in the cavity and
it is quite strong in the flow channel, even though the
viscosities of the immiscible fluids were of the same order of
magnitude,

Each laser pulse activated a dye trace in the cavity
and channel flow. High speed movies were made of the
movements and distortion of these traces: Sequential frames
of the high speed movie were used to obtain velocity infor-
mation, In general, one frame was selected which showed a
trace immediately after activation. At that time, the trace
was virtvally vertical and straight as 1s indicated in Fig. 2.
A second frame was selected which showed some movement
and distortion of that trace. The time was known during
which this movement and distortion took place, since the

Liguid-ligquid driven cavity flow.

movies were taken at a known speed, usually 400 frames per
second. It was necessary to determine the exact position of
points located on the traces, so that quantitative velocity
information could be obtained. This was done with help of
an x-y-digitizer linked to a computer. Details of the proce-
dure were discussed by Walter. The results of the procedure
included information on interface velocitigs, tangential
shear stress on both sides of the interface, and influence of
flow rates and geometry of the cavity on the interface
characteristics.

In particular it was found that the shear stresses at both
sides of the liquid-liquid interface were not equal in all the
cases tested. It was also found, that except near the edges of
the cavity, the difference in shear stress on both sides of the
liquid-liquid interface did not depend on the interface loca-
tion. Scriven [6] presented a completely general formula-
tion of the dynamics of a Newtonian fluid interface. In his
formulation, the rheological behavior of the interface is
characterized by its interfacial tension and surface viscosity.
A result of his studies was that, for a two-dimensi¢nal flow,
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FIG. 2. Schematic of cavity image.
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FIG. 3. Liquid-liquid driven cavity flow, mobile interface,

the difference in shear stress on both sides of a plane
liquid-liquid interface is given by the relationship
W

oo
A‘r=5;+(lc+£)'a—y?, (1)

where y is the coordinate aligned with the surface, x and ¢

represent coefficients of surface viscosity, W is the tangential

velocity of either phase at the interface, and ¢ is the surface
{or interface)} tension. Given a constant or nearly constant

interface velocity over most of the length of the cavity,.

one must conclude that the interface tension o varied
linearly with the cavity length if Eq. (1) is correct, Other
observations included:

{a) The ratio of shear stress at the cavity side to the
shear stress at the channel side is small {much less than one)
for low bulk flow velocities. This ratic is increasing
(approaching one) with increasing bulk flow velocities.
Therefore, it may be concluded that the interface is
hecoming more mobile as the bulk flow velocity increases,

(b} The ratio of cavity shear stress to channel shear
stress is increasing with cavity length and approach values
of the order of one. Interfaces of long cavities are more
mobile than interfaces of short cavities. This can be clearly
seen in Figs. 3 and 4.

(c) Increasing the length of the cavity increased the
interface velocity. ’

FIG. 4. Liquid-liquid driven cavity flow, rigid interface.
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These observations are not unexpected, and they agree
with observations made on liquid drops falling or rising in a
second, immiscible liquid [14].

2. NUMERICAL STUDY

The flow in a liquid-liquid driven cavity was simulated
numerically using a meodified marker-and-cell (MAC)
finite difference scheme. The specific flow and geometric
parameters of the experimental study were used in order to
assess the applicability of the numerical results. Through
variation of the channel-cavity geometry, as well as the fluid
properties and flow velocities, the qualitative results of
the numerical simulation were examined and compared to
those of experiment.

Mathematical Formulation

The geometry of the channel-cavity configuration is
shown in Fig. 5. Here a Cartesian coordinate system is
situated with the origin at the lower left-hand corner of the
solution domain. A cavity of length L_, and height H is
located a distance X, from the origin in the lower wall of
a channel of height C. Fluid of density p, and viscosity p,
fills the cavity, while fluid of density p,and viscosity u, flows
continuously into the channel from the left and exits on
the right. The interface between the two immiscible fluids is
characterized by the interface tension coefficient ¢, and
gravity acts in the negative p-direction. All solid boundaries
are assumed to be rigid no-slip walls and the inlet and outlet
of the channel are considered continuative inflow and
outflow boundaries, respectively,

In addition, the following assumptions are made:

(a) The flow is laminar and two-dimensional. Three-
dimensional effects can be minimized by assuming a large
enough cavity width to length ratio. Since transition to tur-
bulence for fuily developed channel flow occurs at Reynold’s
numbers on the order of 2000, laminar flow can be main-
tained if the flow rate in the channel does not exceed a value
consistent with an appropriate critical Reynold’s number.
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FIG. 5. Channel<avity geometry and nomenclature.
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(b) The fluids are Newtonian and characterized by
constant thermophysical properties. For the bulk fluids,
there is no reason to expect non-Newtonian fluid behavior,
but for the fluid near the material interface there are
various theories concerning the appropriate stress—strain
relationship [6, 18]. The assumption of constant physical
properties is reasonable since no temperature or concentra-
tion gradients are considered.

{c) The problem is isothermal. With this assumption,
any free-convection effects can be neglected.

{d) 1In the presence of surfactants, the concentration of
surfactant species in the interfacial fluid region will vary,
and it is assumed that this variation is such as to cause a
linear variation in the value of the interfacial tension
coefficient. It is this assumption which resulted from the
experiments.

Governing Equations

The governing equations are the
Navier-Stokes eqguations of fluid motion,

*u  du
ot Yo p6x+gr+v< ? 6)’) (2)

% s a”+ua-—”— Lop, +v(-6—23+@) 3)
a ax e T pay BTG

familar 2D

ou 611 6u 1 ép

together with the equation of continuity,

ou ov
a+a—y~0. (4)

Here, velocity components (x, v) are in the Cartesian coor-
dinate directions (x, y), (g, g,) denote body accelerations,
v is the kinematic viscosity, p is the fluid density, and pis the
fluid pressure.

As a means of incorporating the pressure and the condi-
tion of incompressibility into the numerical solution algo-
rithm, we allow for limited compressibility effects [19] and
rewrite Eq. {(4) as

1 ép ou ov
ottty

(5)
where ¢ is the adiabatic speed of sound in the fluid.
Discrete finite difference approximations to Egs. (2)}-(5)
are obtained through the use of a method originally
proposed by Hirt and Nichols [20] which incorporates a
volume of fluid function, F, in order to track material inter-
faces within the solution domain. Essentially, F is a step
function, equal to unity for full computational cells contain-
ing fluid of density p,and viscosity p,, and is equal to zero
for full cells containing fluid of density p, and viscosity p..
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Fractional values of F then indicate cells containing a
material interface. The computational details involved in
tracking the interface using the volume of flmd function may
be found elsewhere [20, 21].

Locating the discrete values of the dependent variables at
the cell positions shown in Fig. 6 results in the approxima-
tions to Eqs. (2} and (3),

n+1l n+1

uj+1/2_j:H?+ 1/2,j+af[_(pH_|,j_P7,;])/5pxi+1/2+ £
—FUX -FUY + VISX]

U?;+11/2 =0}, 12101 _{P?f;l _ng-r 1)/5Pyj+ 121+ 8,
—FVX—-FVY+VISY], (7)
where
3px; 12 = e+ (pr—p.) Fi ) ox;.y
+ (Pc + (Pf_ pe) Fi. 1,;‘) dx;]
and

0PV 1p= slp.+(p—0) Fi ) dyp,
F(p.+(p—p ) Fiii1) 6y,

Here, for example, pj.jj‘ represents the value of p(x, y, t) at
time (n+ 1) & and at a location centered in the ith cell in
the x-direction and the jth cell in the y-direction. Half
integer subscripts refer to cell boundary locations. Also,
0x; 11 =3(8x;+0x,, ) and 8y, 1p= %(6}’;'4' 0y 1) FUX
is the advective flux of « in the x-direction, FUY is the
advective flux of » in the y-direction, VISX is the viscous
acceleration in the x-direction and similarly for the
y-direction advective and viscous acceleration terms. All
these terms are evaiuated using the old time-level (u)
values for velocities,
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FIG. 6. Location of variables in the MAC computational cell.
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Evaluation of the advective flux terms requires special
care to ensure conservation of momentum on a variable
mesh while maintaining both accuracy and stability of the
numerical solution as discussed in [20]. Thus, a combined
central difference-donor cell approximation is used for the
advective flux terms as

FUX:% [8x,,,DUL+ 8x,DUR

o

+asgniu)(dx, ., DUL—6x . DUR)],
where

DUL:(ui+l,‘2‘j_ui71/2,j)/'§xi;
DUR:(ur+3/2,1_“f+1/2,j)/5x.'+1§
0x,=0x;, | +dx;+asgn{u)(6x;, ; — 0x;)
and sgn(x) means the sign of u,,,,. The parameter «
controls the amount of donor cell differencing used in
the approximation. Analogous expressions are used for

FUY, FI'X, and FV'Y. All viscous acceleration terms are
approximated with standard centered differences.

Boundary Conditions

Referring to Fig. 5, the applicable boundary conditions
for the bulk fluids can be stated as

u=0v=0 y=H0<x<x0;X 2 X+ Lo
u=00=0  y=0;x.,, Sx<xq + Lo
u=0,0=0 y=H+C;x=20
u=0;v=0 X=X,: 0y H
u=0;v=0 X=Xeav+ Lo; 0SSy H
u=f(y)v=0 x=0yz2H
2—2= ;g—i=0 x=L,y>H,

where f(y) is the velocity profile of Poiseuille flow.

The preceding boundary conditions are enforced in the
numerical scheme through use of a layer of fictitious cells
surrounding the computational mesh as discussed by
Mansell [21] and Weich ef al. [22].

The Material Interface

For the numerical study we restrict attention to a
nearly plane two-dimensional interface so that Eq. (1) is
applicable. The last term on the right-hand side of Eq. (1)
represents the viscous shearing stress due to the stretching
or contraction of the interfacial monolayer between the two
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fluids. Numerical estimates indicate that, except near the
ends of the cavity where the interface must decelerate
rapidly in order to satisfy the boundary conditions at the
cavity walls, the value of d°W/dy* is several orders of
magnitude smaller than the interfacial tension gradient
for the cases considered here. In addition, results of the
experimental study have shown that the interface velocity is
nearly independent of position along the interface. There-
fore, this term will be neglected here and only the influence
of an interfacial tension gradient will be considered. Thus,
we rewrite Eq. (1) as

é

]

~

(8)

Teay — Tohan

o H

l!

where ! is the coordinate aligned with the material surface.
For the numerical seolution, we therefore assume that this is
the appropriate dynamical condition to be apphed at the
boundary between the two bulk fluids.

Equation (8) is reformulated in terms of the tangential
velocities near the interface. From the assumption of
Newtonian fluid behavior and considering for the present
time that the interface is nearly horizontal, we can express
the tangential shear stresses at the interface in terms of the
horizontal velocity components as

(+5).-(+5) -5
Pav). '), " ar
Referring to Fig. 7 and noting that the flow in the channel

above the interface “drives” the flow in the cavity below, it
is apparent that we must apply Eq. (9) in such a manner as

(9)

Uiz,

j+1

Y

X 1.

i-1 i i+1

FIG. 7. Cell arrangement for applying interface stress conditions.
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to relate the tangential velocities above the interface to
the shear stress, and hence tangential velocities, below the
interface.

Approximating the velocity gradients with finite dilfer-
ences we have

duy _ Q_t”‘_ﬂﬂ_fu] (5_“) :[Hmn.;—Um}
/e dyb © v/, dva

where U, is the tangential velocity at the interface, dya is
the distance between the center of cell (i, /) and the inter-
face, and dyb is the distance between the interface and
the center of cell (i, j—1). To obtain a value for U, the
horizontal velocity components above the interface are
extrapolated as

(Uv 12, 50 12— Hig 1/2.j)

dy

J

dya.  (10)

Uinl:ui+l_.‘2¢j_

Combining Eq. (10) with the discretized representations for
the velocity gradients in accordance with Eq. (9) we finally
obtain a relation for u,; , that is consistent with the
dynamic interfacial boundary condition, Eq. (14),

dva p,dyb
u:’+l/2.j~1:ui+1/’2-1(1 5_y_.+ ,uf 6y)
i c J
» (gzy_a L By _@9(53_")
i+ li2j+1 8y,  n. oy, Be N ivip

(11)

In Eq. (11) above, it is assumed that the interfacial ten-
sion gradient {8¢/8!), . ., ; is constant along the interface,
reflecting the assumption that the interfacial tension coef-
ficient varies linearly due to the surfactant concentration
gradient along the interface. Quantitatively, the variation of
surfactant concentration is not considered explicitly in the
present numerical model, but we assume qualitatively that
it is such as to produce a linear variation of the surface
tension coefficient.

The above approximation equations require knowledge
of the material interface location within the computational
surface cells, The method of determining the location of the
interface based on the distribution of the volume of fluid
function, F, is described in [20], and its implementation in
the present context is discussed in [217.

The calculation of surface tension forces was considered,
and a method of applying these forces as additional
accelerations in the momentum equations was discussed
by Daly [23]. For the case of a non-zero surface tension
gradient a modification must be made. In this case, the
interface tension coefficient varies aiong the interface;
therefore the surface pressure used in defining these surface
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tension forces also varies. For a constant interfacial tension
coefficient, the surface pressure is given by
pszlaK.ry! (12)
where K, is the local curvature of the interface defined as
the reciprocal of the principal radius of curvature in the x-y
plane. If ¢ varies along the interface in the downstream
direction, then Eq. {12} above must be replaced with
ph= o) K,,. (13)
where { is the distance along the interface. Now, assuming
the interface deviates only slightly from the horizontal, we
have as a first approximation

ﬁo_v'aa

AT Bx*

where x* is measured from the leading edge of the cavity,
ie.,

x*=x- Xeay
and

0 = X* B Lcav — Xcay-
Letting o, be the constant equilibrium value for a
surfactant-free interface, we have

da
c(x*)=o'0+ x* %

(14)
For most Newtonian fluids and common surfactants, the
interfacial tension coefficient decrgases with increasing
surfactant concentration, so (fg/dx*) <0 and Eq.(14)
expresses the fact that o decreases linearly from 2 maximum
value of o, at the upstream portion of the interface.
Equation (14) is then used to evaluate p (/) in Eq. (13) and,
finally, the proper interface tension forces for each interface
cell in the computational mesh.

Numerical Results and Discussion

For the numerical simulation, the fiuid properties of the
experimental study were used. For the denser phase, an
ethanol-water mixture, the density and kinematic viscosity
were 0.915 gfcm® and 0.03068 cm?/s, respectively, while
the lighter phase in the channel, an AMSCO mineral oil,
had a density of 0.755 g/om* and kinematic viscosity of
0.02036 cm?/s. While measurements of interfacial tension
coefficients are difficult at best, due to the relatively high
sensitivity to temperature and surfactant concentration
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gradients, Walter [157 reports a nominal value of
8.00 dynes/cm., Simulations were run for a maximum bulk
flow velocity in the channel of U_,, = 5.00 and 10.00 cm/s
for cavity aspect ratios, L.,,/H, of (.50, 0.75, and 1.00.

Normalized values of the interface velocity at the
centerline of the cavity were calculated and plotted along
with experimentally obtained values for cach of the cases
considered. Figure & displays results for a channel centerline
velocity of 10.00 cm/s. Two sets of numerically obtained
data points are shown, one for do/dx* =00 and one¢ for a
non-zero interfacial tension gradient. Initially, since many
researchers assume continuity of tangential shear stress
across a material interface, it was assumed that do/dx* was
identically zero. In this case, the situation corresponds
to a completely mobile interface. Examination of Fig. 8
reveals that this assumption results in interface velocities
approximately 200% higher, on average, than those
obtained experimentally. Since any real system will involve
some degree of contamination, it is reasonable to expect
that the presence of surfactants will have a significant
influence on the resulting flow fields and, therefore, must be
considered.

For this reason, additional simulations were performed
for non-zero values of the interfacial tension gradient,
da/dx*, 1t was found that for a given constant value of
dojdx* the numerical simulation produced results com-
parable to those of experiment. The second set of data
points in Fig. 8 illustrate these results for a value of do/dx*
of —0.4 dynes/cm’. As can be seen, the numerical and
experimental results compare quite favorably. Based on
these comparisons, it was concluded that the numerical
model provides reasonable results for the assumed variation

ing.
020 I T T T [ T “V_‘!—I_V’—f'_'_q

F O Experimental 2 3
8 x Numerical ; do/dx=~04 dynes/cm
L x Numerical ; do/dx=0.0
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Uinl/Umax
a
=
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o
o
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r__T—I_T_TFT—_\
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0.0 0.5 i 0 i5
LCaV/H

Upmax=10.0 em/s ; py/1ey=1.86 : pl/p2=0,825

FIG. 8 Comparison of numerical and experimental results for the
interface velocity.
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H de/dx"=-0.000 dy’ c
L - v do/dx"=-0.400 dynes/E

y (em)

1.5 2.0

x (cm)

Uinax=10.0 om/s | up/p,=1.86 : p,/p,=0825 ; H/L,,=1.00

FIG. 9. Normalized velocity profiles with and without interface
tension gradients.

In Fig. 9 normalized horizontal velocity profiles through
the cavity region of the flow field are displayed, while Fig. 10
and Fig. 11 display vector velocity plots for the test cases
with U, = 10.00 cm/s and a cavity aspect ratio of 1.00 for
both zero and non-zero values of do/dx*. The fiow fields
resulting from a non-zero surface tension gradient more
closely resemble those of experiment.

Having deemed the numerical formulation acceptable
through comparison with experimental results, a parametric

20T VT T T

‘ T H T i H T T ]
1.5 IE— —
—_ I |
S 10 i
> C
0.5 —
L
L
Y
1.5
Uy =10.0 em/s ; pg/u,=1.86 : p,/6,=0.825 ; |dg/dx"=0.000

FIG. 10. Vector plot of cavity flow.
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y (em)

0.5

0.0
1.5 2.0 2.3 3.0 3.5
x {cm)

Unex=10.0 cm/s : wo/1,=1.86 ; p,/p,=0.825 ; {da/dx"|=0.400

FIG, 1}. Vector plot of cavity flow,

study of the liquid-liguid driven-cavity problem was under-
taken with specific emphasis directed towards the behavior
of the velocity and tangential shear stress gradients in the
vicinity of the material interface. Several simulations were
performed for various fluid property ratios, channel-cavity
configurations and bulk flow velocities in the channel. To
limit the number of parameters involved, the densities of the
two phases were kept constant at the following values;
p,=075g/cm? for the lighter phase in the channel and
p>=1.00 g/cm® for the fluid in the cavity. The viscosity of
the lighter phase was also held constant at g4, =0.01 cm?/s,
as was the maximum value of the interfacial tension coef-
ficient at o= 1.00 dynes/cm. In addition, the height of the
channel and the depth of the cavity were kept constant and
equal as the length of the cavity was varied from 0.25 to
1.00 cm.

Finally, all cases were run on a variable mesh of 102 x 102
cells with dimensions of dx,;,,=0025cm, dy.,;,=
0.01875cm and dx,, =0050cm, dy,..=0025cm. To
achieve adequate spatial resclution, the smallest dimen-
stoned cells were located in the cavity region of the solution
domain as well as extending partly into the channel in
the vicinity of the interface. This situation proved to be
sufficient in terms of accuracy and numerical stability
considerations while still minimizing computer storage
requirements.

Through variation of the kinematic viscosity of the denser
fluid in the cavity, a range of dynamic viscosity ratios,
Ha/ny, from 1.5 to 5.33 was achieved. The maximum value
of the interfacial tension coefficient, o, was held constant at
1.00 dyne/em while its spatial gradient in the flow direction
was varied from zero, representing equality of shear stress at
either side of the interface, to a maximum value correspond-
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0.20
a
0 do/dx"'=-0.00 dynes/em”
% do/dx"=—-0.01 dynes/cmz
o do/dx=-0.02 d}mes/cm2
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¥
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~0.00 bbbl b

1 2 3 4 8 °
TS

U, .y=5.00 em/s ; L_,./H=1.00 ; p /p,=0.75
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0.20 T —r—r =
b R SR T l

da/dx’=—0.00 dynes/cm?
do/dx"=—0.01 dynes/em’
do/dx"=-002 dynes/em”
do/dx"=-010 dynes/cm?®

Q.15

[Uint/Umax}aVE

~0.00

fa/ ey
Uax=5.00 cm/s Lw/H=0.50; p,/0p,=0.75

FIG. 12. Nommalized interface velocity versus viscosity ratio.

ing to a 10% decrease at the downstream portion of the
interface, resulting in a situation of negligible flow in the
cavity for large cavity aspect ratios. Finally, ail cases were
run for channel centerline velocities of 1.00 and 5.00 cm/s.
For a more extensive presentation of the numerical
simulation results, the reader is referred to Ref. [217].
Figure 12 displays the influence of the dynamic viscosity
ratio on the interface velocity for various values of the inter-
facial tension gradient, while Fig. 13 shows the correspond-
ing values of the tangential shear stress for cavity aspect
ratios of 1.0 and 0.5 and a bulk flow velocity of 5.00 em/s. Tt
is understood that the derivative da/dx* depends on bulk

T T I—TT_V—T T | T T ‘T_]—_J_ ™T T J T T T
0z [ do/dx"=-0.00 dynes/cm .
®
o
o

[+Y)

2
do/dx"=-0.01 dynes/cmz
do/dx"=-0.02 dynes/cm
do/dx*=—-0.10 dynes/cm?
Cavity Shear Siress
Channel Shear Stress

(Tiut)ave (dynGS/CIIIE)

1 2 3 4 5 6
i/ ey
U, =5.00 cm/s ; L, /H=1.00: p,/p;=075

flow velocity and cavity geometry. However, it is more con-
venient 1o study the interrelationship between do/dx*, the
interface velocity, and the cavity length by selecting a value
for do/dx* rather than by determining it. For a given value
of duo/dx*, the interface velocity is seen to increase with
increasing cavity length. Examination of the stress values for
various interface tension gradients indicates that the stresses
at the cavity side of the interface decrease, while those on the
channel side increase for increasing do/dx*. The implication
here, is that, as the cavity aspect ratio increases, the inter-
face becomes more mobile. This agrees with observations of
rising or falling drops in liguid-liquid two-phase systems, in
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FIG. 13, Interface shear stress versus viscosity ratio.
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FIG. 14. Nommalized velocity profiles for various interfacial tension gradients.

that, as the terminal velocity or the diameter of the drop
mcreases, the drop surface exhibits increasing mobility.
In addition, it is seen that a slight variation in the surface
tension coefficient decreases the mobility of the interface
significantly. In all cases, the interface velocity is seen to
decrease with increasing u,/n, as would be expected, since
for increasing values of u,, the interface more nearly resem-

bles that of a solid boundary. Likewise, the stress at the

At the cavity side, the viscous shear rate decreases with
increasing viscosity ratios.

Experimental and numerical studies {24, 257 have shown
that for drops of large diameter, the surface exhibits a higher
degree of mobility and internal circulation, indicating larger
values of shear stress at the inside drop surface. In addition,
smaller drops exhibit terminal velocities identical to those of
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FIG. 15. Normalized interface velocity versus interface tension gradient. FIG., 16. [Interface shear stress versus interface tension gradient.
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rigid spheres of the same size and density and lesser values
for larger drops with higher surface mobility. Likewise, the
siress at the outer surface of the drop decreases for increas-
ing diameters, resulting in the observed higher terminal
velocities. In the velocity profiles plotted in Fig, 14, this
variation of the tangential stresses is evidenced by the
departure of the velocity in the channel above the cavity
from the familiar parabolic profile of Poiseuille flow.

A basic assumption of this study is that of a linear varia-
tion of the interface tension coefficient. While no mention
has been made about the mechanism causing this variation,
it is known that the interface tension is dependent upon
both the temperature and composition of the two-phase
system under consideration. For drops translating through
fluid media, the tendency for surfactants to accumulate at
the interface, and subsequently be swept to the aft portion
of the drop surface, produces a positive concentration
gradient, resuiting in a decrease in surface tension. A similar
situation exists in cases involving heat transfer to or from
drops in direct-contact heat exchangers. A drop of cold oil
translating through a hot fiuid in a heat exchange column
develops the highest temperature gradients at the
downstream portion of the drop surface, resuiting in lower
values of surface tension. In addition, experimental observa-
tions indicate that, in both cases internal fluid circulation
inside the drops is suppressed due to the rigid behavior of
the drop surface. Thus, an increase in the concentration
of surfactant or temperature gradients is accompanied
by a reduction in interfacial tension coefficients and a
corresponding decrease in mobility of the interface.

Figures 15 and 16 illustrate the effects of a negative inter-
facial tension gradient on the flow in a liquid-liquid driven
cavity. Consistent with the above observations, the interface
velocity is seen to decrease with decreasing surface tensiorn.
The influence of the viscosity ratio is also displayed.
Figure 14 aiso shows the effects of various values of do/dx*
on the overall flow field. As expected, for increasing
magnitude of do/dx*, the circulation within the cavity
weakens, as the interface velocity, as well as the shear stress
at the cavity side of the interface, decreases.

Essentially, the parametric siudy shows that the liquid-
liguid driven cavity flow exhibits a behavior which is very
sifnilar to the behavior of drops translating in a second,
immiscible liquid. Depending on geometry and on the varia-
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tion of interface tension in flow direction, the liquid-liquid
interface will be rigid, partially mobile, or, in rare cases,
fully mobile.

CONCLUSION

Liquid-liquid driven cavity flow was studied numerically.
Assumptions made with regard to the behavior of the
liquid-liquid interface were based on experimental evidence.
The behavior of liquid-iiquid driven cavity flow is shown to
be very similar to that of liquid drops translating in a second
immiscible liquid.
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